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Phugoid Approximation for Conventional Airplanes

W. F. Phillips*
Utah State University, Logan, Utah 84322-4130

An improved closed-form approximation for phugoid motion in conventional airplanes is presented. Although
several closed-form approximations for phugoid motion are currently available and widely used, none of these
approximations accurately predict all of the fundamental characteristics of phugoid motion. The new approxima-
tion accounts for changes in angle of attack as well as the effects of pitch stability and pitch damping. The total
phugoid dampingis shown to depend on pitch damping as well as aircraft drag. In addition, this solution points out
another important contribution to phugoid damping called phase damping. It is shown that the phase-damping
contribution to the real component of the phugoid eigenvalue is always positive and tends to reduce the total
phugoid damping. Under certain conditions this phase damping can cause the phugoid mode to become divergent.

Nomenclature
A, = planform area of the wing
Cp = total drag coefficient
Cp, = parasitic drag coefficient
Cp.« = changein drag coefficient with angle of attack
C, = lift coefficient
C. . = changein lift coefficient with angle of attack
Cy = pitching moment coefficient
Cy.o = changein pitching moment coefficient

with angle of attack

Cyw = changein pitching moment coefficient
with dimensionless pitching rate

c = mean chord length

e Oswald efficiency factor

Fr = thrust force

g = acceleration of gravity

I, = pitching moment of inertia in body-fixed
coordinates

m = aircraft mass

R, = aspectratio

Ry = phugoid pitch-dampingratio

R, = dimensionless gravitational acceleration

Ry = dimensionless change in pitching moment
with axial velocity

Ry .« = dimensionlesschange in pitching moment

with angle of attack
R) w = dimensionlesschange in pitching moment
with pitching rate

R, = phugoid phase-divergenceratio
R, = phugoid stability ratio
R, = dimensionless change in axial force with

axial velocity

R., = complex amplitude

R.. = complex coefficient

R,, = complex phase

R, . = dimensionlesschange in axial force with
angle of attack

R, = dimensionless change in normal force with
axial velocity

R, = complex amplitude

R, = complex coefficient

R, = complex phase

R,, = dimensionlesschange in normal force

with angle of attack
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t = time

Vv = airspeed

Vi = axial velocity component in body-fixed
coordinates

V., = normal velocity componentin body-fixed
coordinates

Vo = equilibriumairspeed

Xy = horizontal position in Earth-fixed coordinates

Xr = axial thrust offset in body-fixed coordinates

Zy = vertical position in Earth-fixed coordinates

zr = normal thrust offset in body-fixed coordinates

a = angle of attack

ar = thrust angle

A = deviation from equilibrium

4 = dimensionless vertical position

0 = Euler elevation angle or pitch attitude

A = eigenvalue

A; = imaginary part of eigenvalue

Ar = real part of eigenvalue

£ = dimensionless horizontal position

P = air density

T = dimensionless time

v = dimensionless forward velocity

oy, = pitching rate in body-fixed coordinates

w = dimensionless pitching rate

w, = dimensionless undamped natural frequency

Introduction

HE low-frequency oscillationsin altitude and airspeed that de-

velop when an airplane is disturbed from equilibrium flight
are referred to as phugoid motion. The motion is a slow oscillatory
interchange between kinetic and potential energy that occurs when
a statically stable aircraft attempts to reestablish the equilibrium
balance between lift, weight, thrust, and drag. This periodic mo-
tion has been studied for nearly 100 years and is well understood.
Lanchester! publishedthe firstdescriptionof phugoidmotion,andin
this work he presents the first elementary theory of dynamic aircraft
stability. Shortly thereafter,a more rigorous mathematical treatment
of aircraft motion and dynamic flight stability was developed and
published by Bryan.2 Together, the work of Lanchester and Bryan
laid the foundation for the study of dynamic flight stability in gen-
eral and phugoid motion in particular. In the following decades,
much was published on theoretical and experimental investigations
of dynamic flight stability and the application of this work to air-
craft handling characteristics and design. Perkins® has presented a
detailed review of this early work. For the past 50 years, the theoret-
ical analysis of phugoid motion and its applicationto aircraft design
hasbeena topictreatedin virtuallyall engineeringtextbooksdealing
with aircraft stability and control (see Refs. 4-14).
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One approach to the study of longitudinal aircraft dynamics in-
volves solving the full nonlinearequationsof motion.!* This system
of nonlinear equations is quite complex. Whereas explicit analytic
solutions are rare, such solutions have been obtained for one de-
gree of freedom (for example, see Painleve!® and Campos et al.'”).
Nonlinear longitudinal dynamics with three degrees of freedom is
typically treated using the method of bifurcation together with nu-
merical methods. Campos'® gives a good review of the work on
nonlinear aircraft dynamics.

A more common approachto longitudinalaircraftdynamics starts
with the linearized equations of motion that were first developed
by Bryan.? Linearized phugoid motion is characterized by the fre-
quency, the damping rate, and the relative amplitudes and phase
shifts for the oscillationsin airspeed, angle of attack, pitching rate,
and altitude. Once the aerodynamic stability and damping deriva-
tives have been determined from wind-tunnel tests or other means,
the free flight phugoid characteristics for an aircraft can readily be
evaluated. This can be done by numerically determining the eigen-
values and eigenvectors associated with the linearized equations of
motion (for example, see Etkin and Reid"?). However, the eigenval-
ues and eigenvectors for phugoid motion depend on many aircraft
design and operating parameters and the nature of this dependence
is not easily observable from a numerical solution. For this rea-
son, a closed-form solution that accurately describes the essential
features of phugoid motion is desirable. In addition, closed-form
solutions have always been useful for the optimization of aircraft
control systems (see Ashkenas and McRuer!?).

Lanchester' developed the first closed-form approximation for
phugoid motion. In his original solution, Lanchester assumed no
change in angle of attack and no change in the net axial force.
With these assumptions, Lanchester obtained an approximation for
the phugoid frequency. However, this approximation predicts com-
pletely undamped sinusoidalmotion and gives no information about
the phugoid damping. A well-known modification of Lanchester’s
solution, which does include an approximation for the phugoid
damping, has been widely used. In this approximation, Lanchester’s
original assumption of no change in angle of attack is retained but
the assumption of no change in axial force is dropped. Several vari-
ations from this constant angle of attack approximation have been
used.2~23 A somewhat general variation of this approximation was
recently presented by Bloy.?* In this approximation, which accounts
for the effects of thrust offset, the assumption of no change in angle
of attack is relaxed. Instead, the approximationis based on neglect-
ing all time derivatives in the pitching moment equation. The more
commonly used constantangle of attack approximationis obtained,
as a special case, from Bloy’s solution when the thrust vector is
aligned with the center of gravity.

Althoughseveral variationsof a closed-form phugoid approxima-
tion have been used, none of these accurately predict many of the
fundamental characteristics of phugoid motion. The current paper
presents an improved closed-form approximation that more accu-
rately describes both the period and the damping for phugoid mo-
tion. This new solution accounts for changes in angle of attack and
accurately predicts the effects of pitch stability and pitch damping.
In addition, the solution points out another contribution to phugoid
damping that the author has called phase damping. Under certain
conditions this phase damping can cause the phugoid mode to be-
come divergent.

Current Phugoid Approximations

To obtain the phugoid eigenvalues and eigenvectors, whether nu-
merically or analytically, we start with the linearized longitudinal
equations of aircraft motion. The development of these equations
can be found in any undergraduate textbook dealing with aircraft
dynamics (for example, Etkin and Reid'*). The eigenvalues and
eigenvectors are obtained from the homogeneous equations, with
all control inputs set to zero. For phugoid motion, the oscillations
in angle of attack are small and of low frequency. Thus, for this mo-
tion, we neglect the force and moment derivatives with respect to
the rate of change of angle of attack. Similarly, we also neglect the
change in axial and normal force with respect to pitching rate. If we

alsorestrict the analysis to deviations about level flight, the familiar
longitudinal equations of motion can be written in dimensionless
form as

AD R, R, 0 0 0 -R, Av
A& R. R, 1 00 0 Aa
AW Ry Ryo« Ryw 0 0 O Aw
A (Tl 1 o 0 00 0 A&
AL 0 1 0 00 -1 AC
AD [ 0 0 1 00 o0 _]|aAe

)]

As is the usual convention, the characteristic length is taken to be
one-half the mean chord length, and the characteristic velocity is
taken to be the equilibrium airspeed. Thus,

Av= AV, IV,  Aa=AV.

b

Vo, A®W= Aw,c/2V,

A& =2Ax/c, Al =2Az4/C 2)

where the A indicates a deviation from equilibrium and the notation
used on the left-hand side of Eq. (1) indicates differentiation with
respect to dimensionless time,
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The dimensionless coefficients on the right-hand side of Eq. (1) are
all evaluated at the equilibrium flight condition and are defined as
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The best known and most widely used phugoid approximation
is obtained from Eq. (1) by setting the deviation in angle of attack
equal to zero and ignoring the pitching moment equation. A more
general variation of this approximation, due to Bloy,?* is obtained
fromEq. (1) by simply neglectingall time derivativesin the pitching
moment equation. Most of the commonly used variations of the
phugoid approximation can be obtained as special cases of Bloy’s



32 PHILLIPS

solution. With this approximation,the eigenproblemassociated with
Eq. (1) becomes

[(R,-» R. 0 0 0 -R,
R, (R,e—2) 1 0 0 0
Ry Rya 0 0 0 0
1 0 0 -2 0 0
0 1 0o 0 -1 -1
| 0 0 1 0 0 -1 _]
Av 0
Aa 0
xJATL_J0 s)
A& 0
AL 0
A6 0
The nontrivial eigenvalues obtained from Eq. (5) are
l_[& _ Ru(Rea— R,;)]
2 2Ry o
Ry.a 2 2Ry«
(6)
and the associated eigenvectors are given by
Av A
Aa ~(Ry/Rup.)2
Aw b =< [-R. + (Roo = V(Ry/Ru.)IX 3 AE (7)
Ag [R. = (ReaRu/Ru.a)l/ A
A6 —R, + (R, — V) (Ry/Ruy.c)

If we also assume that the thrustis constant, aligned with the cen-
ter of gravity, and in the direction of flight, the equilibriumlift force
must equal the weight and the equilibrium pitching moment must
vanish. For this common configuration, from Eq. (4) we can write

Aw_ Aw_ c
R.=-L2Cc, P C( o8 ): gc:—zRg

) 2m 2m %p V()2 Aw V02
(®)
R,\' = _(pAwE/zm)CD = _(pAwE/zm)CL(CD/CL)
= —2R,(Cp/Cy) )
and

With these additional restrictions, the approximate phugoid eigen-
values and eigenvectors from Egs. (6) and (7) reduce to the well-
known form

A =R, [—(CD/CL) +i/2— (CD/CL)Z_]

=(g¢/2V)[~(Cp/ C) £in/2 = (Cp/ C1)?] (11)
and
Av A
Aa 0
AW » =<4 2RA GHAE (12)
AC —2R,/ A
A6 2R

4

Equation (11) predicts the same undamped natural frequency as
Lanchester’s original approximation. This very simple result gives
an undamped phugoid frequency that depends only on airspeed and
not at all on the airplane or its altitude. The phugoid damping as
predicted by Eq. (11) is also quite simple, depending only on the

airspeed and the lift-to-drag ratio for the airplane. Whereas this
approximate closed-form solution has been widely used for many
years, it is not particularly accurate and does not capture many of
the fundamental characteristics of phugoid motion. Because this
approximation ignores all angular momentum terms and results in
no change in angle of attack, it includes only the effects of lift and
drag and does not account for pitch stability, pitch damping, or
changes in angle of attack.

For a typical general aviation aircraft the approximate phugoid
eigenvalues, computed from Eq. (11), are accurate to within about
20-40%. However, for high-performance aircraft, the result pre-
dicted by Eq. (11) is much worse. In fact, under certain conditions,
this approximation does not even predict the correct sign for the
phugoid damping. Because the gravitational acceleration, the air-
speed, the lift coefficient, and the drag coefficient are always pos-
itive, Eq. (11) will always predict a convergent phugoid mode. In
reality, however, modern airplanes can exhibit a divergent phugoid
mode at certain airspeeds.

The approximation given by Egs. (6) and (7) does not accurately
describe phugoid motion under many conditions. Bairstow?° devel-
oped another closed-form approximation that gives a much better
result for the phugoid frequency. However, this approximation was
never widely used, because in most cases the damping predicted
by Bairstow’s approximationis less accurate than that predicted by
Eq. (11).

Improved Phugoid Approximation
Phugoid motion is always underdamped. Thus, the eigenvalues
describing the phugoid mode form a complex pair, A =A, £il;,
where the imaginary part specifies the frequency and the real part
specifies the damping. With this recognition, the eigenproblem as-
sociated with Eq. (1) could be written as

(A +iA)Av
(A % ir)Aa
(A % id)AT
(o % i4)AE
(% % i)AC
(A, £ iX)A6

R, R.. 0 0 0 —-R, |(Av

R R, 1 00 0 Aa

_| Rv Rue Ruw 0 0 0 rw

10 0 00 0 A&

0 1 0 00 -1 AC

[ 0 0 100 o _||ae

Phugoid motionis lightly damped. Thus, the real part of the phugoid
eigenvaluepairis very small. Furthermore, whereas both the angle of
attack and the pitchingrate change significantly with time, the ampli-
tudes for these changesare also very small. Thus, the products4, Ao
and A, Aw are extremely small and can be ignored. This means
that we can approximate the variation in angle of attack and pitch-
ing rate as undamped sinusoidal motion, (A, £ iA,)Aa = +itw,Aa
and (A, £ i4;) AW = +iw, AW, where w, is the dimensionlessun-
damped natural frequency. For the sake of simplicity, we shall con-
tinue to restrict the analysis to deviations about level flight and
assume that the thrust vector is aligned with the center of grav-
ity. With these approximations, the longitudinal eigenproblem in
Eq. (13) becomes

2AL (R, R, O 0 0 —R, |(Av
+iw,Aa R, R_, 1 00 O Aa
+iw, A 0 Ryo. Ryws 0 O 0 A
wme (Tl o 0 00 0 Ae [
AANC 0 1 o 00 -1 ||ac
A6 0o o 100 o0 _]|ae

(14)
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The second and third equationsin Eq. (14) can be combinedto relate
the variation in angle of attack and pitching rate to the variationin
forward velocity. This gives

AAL R, R.. 0 0 0 —R |[Av
Aa R,. 0 0 0 O 0 Aa

A _ R.. 0 0 0 O 0 Aw (15)
AME ([T 1 0 000 O AE
ANE 0 1 00 0 -1 AL
AAO | 0 0 1 0 0 0 ]| A6
where the complex coefficients R,. and R, are defined as

R, (R F W,

R, = By * 1) (16)

RM,(x - Rz,(xRM,w + w,,z x lwn(Rz,(x + RM,w)
and
—R.Ry,
R, = Chidln (17)

T Rya— R.oRyw + W 2iw,(R, o+ Ryw)

The second and third equations in Eq. (15) can now be used to
eliminate the angle of attack and the pitching rate from the first and
last of these equations. Thus, Eq. (15) can be rewritten as

(R, +R..R.—2) 0 0 0 0 ~-R, |
R.. -1 0 0 0 0
R.. 0 -1 0 0 0
1 0 0 -2 0 0
0 1 0 0 -4 -l
| R.. 0o 0 0 0 -2_|
Av 0
Aa 0
Aw 0
Y ae (TYo (18)
AC 0
A 0

The first and the last of the equations in Eq. (18) contain only the
dimensionless forward velocity deviation Av and the deviation in
the Euler elevationangle A 6. These two equations can be separated
from the other four equations, and this system can be rearranged to
give the second-ordereigenproblem,

(Rx + Rx,(xRxc - l) _Rg Av _ 0
o _A]{Ae}—{o} (19)

zc

Av A

Aa R. A

AW % = R, A A& (20)
AL R.—R. /A

A6 R

zc

Equation (19) can be used to solve for the phugoid eigenvalues and
the resulting complex eigenvalues can be used in Eq. (20) to obtain
the eigenvectors.

The characteristic equation associated with Eq. (19) is

12 - (R( + Rx,(xRxc)l + Rg ch =0 (21)

and the eigenvalues are the roots of this quadratic equation,

R, + R, R, R+ R.,R,.\’
A= St > - R,R. (22)

Because the phugoid frequency is very low, we can neglect terms
in Egs. (16) and (17) that contain the phugoid frequency raised to

any power greater than one. Thus, these complex coefficients can
be approximated as

R.R w,
Ry o Mw 15
RM,(x - Rz,(zRM,w RM,w

.wn(Rz(x + RM w)
X 11 [ —
RM,(x - Rz,(xRM,w

I

] =R,,(1F iw,R,)) (23)
and

R, =
" Ryoa— R Ryw

_RzRM,(x 15 wn(Rz,(x + RM‘w)
Fi
RM,(x - Rz,(xRM,w
= R,(1F iw,R,,) (24)

where Ry, R.4, Ry,, and R, are defined as

xps

R.R
R,= —=M= (25)
RM,(x - Rz,(xRM,w
—R.Ry, .,
R, = _ Mo (26)

RM,(x - Rz,(xRM,w

Ry o+ R?
R,, = M Mw 27)
Ry w(Rya — R o Ry w)

and

R.o+Ryw

R,= —=—"%
RM,(x - Rz,(xRM,w

(28)

Using Egs. (23) and (24) in Eq. (22), the phugoid eigenvalues are
approximated as
R, + R, ,R,,(1F iw,R,,)

2

A=

- R,R,(1F iw,R,,)
(29)

The imaginary components of the complex coefficients R, and R,
are very small. This very small phase shift transfers a small fraction
of the imaginary part of the eigenvalueto the real part and transfersa
small fraction of the real partto the imaginary part. Because phugoid
motion is so lightly damped, the small fraction of the real part that
is phase shifted to the imaginary part can be neglected. However,
when a very small fraction of the much larger imaginary part is
phase shifted to the real part, it becomes significant.
Thus, ignoring the phase shift in R,., Eq. (29) can be written

Rx + Rx,(xRxa Y a— — .
Am———ne it\/Rng 1% iw,R,, —

—_— 2
i\/[RX + R, R.(1F iw,R,,)
2

(Rx + Rx,(sza)z
4R, R,

(30)

Because both the phase shift and the square of the damping term are
very small, we can further approximate Eq. (30) as

I

(Rx + Rx,(sza)z

Rx + Rx (xRxa Y . W, Rzp
l%—’iz\/Rng 1Fi -
2 2 8RR,
(31)
which can be rearranged to give
AZ[(Re + R aR)/2] + (W, R/ ReR.0/2)
i\ ReReu = [(R + RioR.)/2P (32)

From Eq. (32) it is clearly seen that there is a componentof phugoid
damping that is related to the phugoid frequency. Here this will
be called phase damping because it results from the phase shift
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between angle of attack, pitchingrate, and forward velocity. As will
be shown, the phase-damping contribution to the real component
of the eigenvalue is always positive and tends to reduce the total
phugoid damping. In fact, under certain circumstances, the phase
damping can result in a large enough positive contribution to make
the phugoid motion divergent.

The dimensionless undamped natural frequency @, has to this
point been unknown. However, this natural frequency is simply the
magnitude of the imaginary part of the phugoid eigenvalues with all
damping terms setto zero. Thus, @, is easily evaluated from Eq. (32)
by settingboth (R, + R, ,R,,)/2and[w@, Rzp\/(Rg R.)]/2to zero.
This gives

w, =\/m (33)

By the use of Eq. (33) in Eq. (32), the dimensionless phugoid eigen-
values can be expressed as

22 (RID{I(RJR.) + Ry = R,

+ i/ ~(4R,/ROR, — [(R/R:) + R, ) (34)

where we define the phugoid stability ratio,

Ry.a
Ry= -2 =—-t2 35
R RM,(x - Rz,(xRM,w

the phugoid pitch-dampingratio,

R aRxa R, «R
R, = —x _ oM@ (36)
Rz RM,(x - Rz,(xRM,w
and the phugoid phase-divergenceratio,
R.,R,R., R..,+R
R,= ——L£2% _ R R | —2—22 (37)
Rz RM,(x - Rz,(xRM,w

If the thrust is independent of airspeed and aligned with the di-
rection of flight, this approximation can be somewhat simplified by
invoking Egs. (8) and (9). Using these equations in Eq. (34), the
dimensionless phugoid eigenvalues can be written as

Az (ge/2V)|{[-(Cp/CL) = Ry + R,]

i\ 2R, —[(Cp/Cy) + RP) (38)

Results

The phugoid frequency predicted from Eq. (34) or Eq. (38) de-
pends on the pitch stability of the airplane. The phugoid damping
predictedfromthis approximationis a functionof the pitch-damping
derivativeand the phugoidfrequency,as well as the drag. The eigen-
values and eigenvectorspredicted by using Eq. (34) or Eq. (38) with
Eq. (20) are greatly improved over those predicted from Egs. (6)
and (7). For example, consider a typical general aviation airplane
having

Vo = 54.864 m/s, ¢=1709m, C, =0.393
Cp = 0.050, Cp.. =035, Cp. =440
Cu.o = —0.68, Crw = —9.95, R, = —0.00071
R, = —0.00556, Ry =0.0, R, =0.00278
R, = 0.00030, R., = —0.03151

Ry« = —0.00220, Ryw = —0.03212

By the use of these values, the exact solution for the phugoid eigen-
values and eigenvectors obtained numerically from Eq. (1) gives

Av 0.002081 = 0.000370i
Aa —0.000115F 0.000025i
Aw 0.000008 * 0.000001

Ae (=629 0.062661F 0.646781i

AC 0.760090

) 0.000081F 0.002489i

X expl(—0.000258 + 0.003242i) 7]

The approximate solution obtained from Egs. (20) and (38) results
in

Av 0.002077 + 0.000370i
Aa —0.000115F 0.000025i
Aw 0.000008 * 0.000001i

AE "2) 0.062894 F 0.647399i

AC 0.759545

A0 0.000081 F 0.002481i

X expl(—0.000257 + 0.003233i) 7]

whereas the approximate solution obtained from Egs. (6) and (7)
yields

Av 0.002233 £ 0.000407i
Ao 0.000000
Aw 0.000012 £ 0.000002i
ae (= 6129 0.051940F 05750050
N 0.816490
A6 0.000289 F 0.003197i

X exp[(—0.000354 £ 0.003916i) 7]

Figures 1-3 show how the phugoid approximation given by
Eq. (38) compares with Eq. (11) and the exact solution for a broad
range of aerodynamic parameters. Note that, as the pitch-stability
derivativeapproachesinfinity, the phugoidstability ratioapproaches
unity, while both the phugoid pitch-damping ratio and the phase-
divergence ratio approach zero. Thus we see that, in the limit of
infinite pitch stability, the result given by Eq. (38) reduces exactly
to Eq. (11). Thus, Eq. (11) represents an asymptotic solution for in-
finite pitch stability. This can be seen graphicallyin Fig. 1. In Fig. 1,
all parameters except the pitch-stability derivative Cy, , have been
held constant at those values given in the earlier example. In Fig. 2,
a comparison between Eq. (11), Eq. (38), and the exact solution is
shown for a broad range of lift-to-dragratio. A similar comparison,
showing the effect of pitch damping C)  is shown in Fig. 3.

0.004 FImaginary -0.00025
()
- g i
g
g =
g L —— Eq.(38) g,
S5 0003 F ——- Eq.(1 -0.00030 3
> I ©  Exact =]
3 g
= 2
?éf’ 3 -4
= 0.002 (Real _ 4 -0.00035
| i | |
-10 8 ¥ 4 2 0

Pitch-Stability Derivative, CM o

Fig. 1 Effect of pitch stability on the dimensionless phugoid eigenval-
ues.
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T ——
. ; 0.0000
g =
é. 0.004 &
[=] 4 1 (@]
o / . -0.0005 §
e o Imaginary g
[}
£ 0.003 |- 8
& —— Eq.(38) g
E ~—-Eq.(aD ]
; o Exact 700010
0‘002 G D [EYEETETEN JSNTTETIY [ETEVENEN Lovanininy
0 10 20 30 40 50 60

Lift-to-Drag Ratio

Fig. 2 Effect of lift-to-drag ratio on the dimensionless phugoid eigen-
values.

0.0040 T T 1 -0.0002
-1
g
g |
2. 0.0035 | ] ?
£ . - -0-0003 =
&} 1 )
= £
s @ B4 e ] &
£ 0.0030 B
& - —— Eq.(38) ] g
E ——— Eq.(11) ] -0.0004
| ©  Exact ]
00025 B 1 Loy ]
230 -20 -10 0
Dimensionless Pitch-Damping Derivative, C,,

Fig. 3 Effect of pitch damping on the dimensionless phugoid eigenval-
ues.

Discussion

The present closed-form approximation allows us to see more
easily how the aerodynamic coefficients and stability derivatives
affect the phugoid motion. Damping has very little effect on the
phugoid frequency. Thus, neglecting the damping in Eq. (38) and
applying the definition of phugoid stability ratio from Egs. (35)
and (4), the undamped natural frequency for phugoid motion
is

2V Ry o
0y = —Limag(2) = V2ooy [t
c Vo\ Rua — ReoRyw

2£ (4m/pAwE)CM,(x
V() (4m/pAwE)CMﬂ - Cz,(zCM,‘w

(39)

From Eq. (39), we first notice that the phugoid frequencyis inversely
proportional to forward speed. In addition, there are four other pa-
rameters that affect the phugoid frequency, the dimensionless mass,
the change in pitching moment with respect to angle of attack, the
change in z force with respect to angle of attack, and the change in
pitching moment with respectto pitchingrate. For a statically stable
aircraft, all of these parameters except the dimensionless mass are
negative. Thus, the phugoid stability ratio is always between zero
and unity. From this term we see that the phugoid frequency in-
creases with dimensionlessaircraftmass and pitch stability, whereas
it decreases with lift slope and pitch damping. As the product of di-
mensionless mass and pitch stability becomes large, compared to
the product of lift slope and pitch damping, the phugoid stabil-
ity ratio approaches unity, and the undamped phugoid frequency
predicted from Eq. (38) reduces to that predicted by Eq. (11). Con-
versely, as the product of pitch stability and dimensionless mass
approaches zero, so do the phugoid stability ratio and the phugoid
frequency.

From Eq. (38), we see that there are three distinct components to
phugoid damping. Here, these are called the drag damping, the pitch

damping, and the phase damping. In most cases the drag damping
is the largest of these three components. From Eq. (38), we define

dragdamping = —(2V,/¢)[(g¢/2VH)(=Cp/CL)]

=(g/Vo)(Cp/Cy) (40)

Clearly, because the velocity, the drag coefficient, and the lift co-
efficient are all positive, the drag damping is always positive. The
total drag is the sum of the parasitic drag and the induced drag. The
parasitic drag coefficient is very nearly constant. The induced drag
coefficient is proportional to the lift coefficient squared, and the lift
coefficient is inversely proportional to the velocity squared. Thus,
we can write
g Cop +Cl[neR, g (CDp + Cp )

dragdamping = ——m8 — =
g ping V() CL V() CL 7T€RA

i CD]J(%pV()ZAw) + mg

1 2 (41)
EERA(EPV() Aw)

Vo mg

At very high airspeeds, the parasitic drag dominates, the drag-to-lift
ratiois proportionalto velocity squared, and the phugoid drag damp-
ing increases linearly with forward velocity. At very low airspeeds,
the induced drag dominates, the drag-to-lift ratio is inversely pro-
portional to velocity squared, and the phugoid drag damping varies
inversely with the forward velocity cubed. At some intermediate
airspeed, phugoid drag damping will exhibit a minimum.

The phugoid pitch damping is defined from Eqs. (38), (36), and
(4) to be

RY (ZR
pitchdamping = iRd =L (&)

VO VO RM,(x - Rz,(xRM,‘w
_ i Cx,(zCM,w (42)
VU (4m/pAwE)Cm,(x - Cz,(zCM,w

To determine the sign of the phugoid pitch damping, we note that the
dimensionless mass is positive, whereas the pitch-stability deriva-
tive, the z-force derivative, and the pitch-damping derivative are all
negative. Thus, the phugoid pitch damping will have the same sign
as the change in axial force with respect to angle of attack. This
axial force derivative can be either positive or negative.

The change in the x-force coefficient with respect to angle of
attack can be written in terms of the lift and drag coefficients,

0
Cio = a—(CL sina— Cpcosa) =Cpcosa+ Cp,sina
a

+Cpsina—Cpacosa=C; —Cp, (43)

The change in drag coefficient with angle of attack can be approxi-
mated as

20630 _ 0 (. C . _ 2.
T0C, oa  aC, \ " meR,|] " mer, *

D,a

_ 2CLo mg
© meR, LpV2A,
Using Eq. (44) in Eq. (43), we have

2C; 2C; o
CoazmC1-=22) = 281 - =% (45)
meR, EpVOAW weRy

(44)

By the use of Eq. (45) in Eq. (42), the phugoid pitch damping can
be expressed as

. . ng 2C‘L a
pitchdamping = —— 1- -
Epvd Aw ﬂ’-eRA

C
X T (46)
(4m/pAwC)CM,(x - Cz,(zCM,w
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From Eq. (46), we see that phugoid pitch damping is inversely pro-
portional to the cube of the forward velocity; it increases with the
pitch-damping derivative; it decreases with increasing pitch stabil-
ity. We also see that phugoid pitch damping can be either positive or
negative. Furthermore, the pitchdampingis more negativefor planes
with low aerodynamic efficiency and more positive for planes with
high aerodynamicefficiency. This may seem counterintuitive. How-
ever, the total phugoid damping is the sum of the drag damping, the
pitch damping, and the phase damping. Lowering the aspectratio or
Oswald efficiency factor will increase the drag damping more than
it will decrease the pitch damping. Thus, total phugoiddamping will
increase with decreasing aerodynamic efficiency, as expected.

Using Egs. (37) and (4) in Eq. (38), the phugoid phase damping
is defined as

phasedamping = —iRl, = —iRgRS(

R,.o+Ryw
Vo Vo

RM,a - Rz,aRM,w

e [(81,,/pAE)C.ry + (4mIpA,E)C
_ _ﬁRS ( wilP _ s P M@ 47
2V03 (4m/pch)CMﬂ - Cz,aCM,w

We have already seen that the phugoid stability ratio can vary from
zeroto positiveunity. The dimensionlessmass and momentofinertia
are always positive, whereas the pitch-stability derivative, the pitch-
dampingderivative,and the z-force derivativeare all negative. Thus,
for a stable aircraft, the phugoid phase damping is always negative,
tending to decrease the total phugoid damping. In fact, under cer-
tain circumstances, it is possible for this negative phase damping to
overpower the drag and pitch damping, making the phugoid motion
divergent. Because the phugoid phase-dampingis inversely propor-
tional to the forward velocity cubed, this condition is aggravated at
low airspeed.

The phugoid approximation given by Eq. (11) predicts that only
by increasing drag can we increase phugoid damping. Increasing
aircraft drag to improve phugoid damping is obviously not a de-
sirable solution. From the current improved approximation, we see
that phugoid damping can, in fact, be increased without increasing
aircraftdrag. This can be done by either increasingthe phugoid pitch
damping or by decreasing the magnitude of the negative phugoid
phase damping.

Conclusions

An improved closed-form approximation for phugoid motion has
been developed. The results show that the phugoid frequency in-
creases with aircraft mass and pitch-stability derivative, whereas
it decreases with the lift slope and pitch-damping derivative. As
the pitch-stability derivative approaches zero, or the pitch-damping
derivative becomes very large, the phugoid frequency approaches
zero. The total phugoid damping is shown to depend on pitch damp-
ing as well as aircraft drag. It is shown that phugoid pitch damping
is inversely proportional to the cube of the forward velocity and in-
creases with the pitch-damping derivative. Phugoid pitch damping
decreases with increasing pitch stability and can be either positive or

negative. This new closed-form phugoid approximation also points
out an additional contribution to phugoid damping that the author
has called phase damping. The phugoid phase dampingis a function
of aircraft mass and moment of inertia, as well as the pitch-damping
and pitch-stability derivatives, and is inversely proportional to the
forward velocity cubed. For a statically stable aircraft, the phugoid
phase damping is always negative, tending to decrease the total
phugoid damping, and it is possible for this negative phase damping
to render the phugoid motion divergent.
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