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Phugoid Approximation for Conventional Airplanes

W. F. Phillips¤

Utah State University, Logan, Utah 84322-4130

An improved closed-form approximation for phugoid motion in conventional airplanes is presented. Although
several closed-form approximations for phugoid motion are currently available and widely used, none of these
approximationsaccurately predict all of the fundamental characteristics of phugoid motion. The new approxima-
tion accounts for changes in angle of attack as well as the effects of pitch stability and pitch damping. The total
phugoiddamping is shown to depend on pitch dampingas well as aircraft drag. In addition, this solution points out
another important contribution to phugoid damping called phase damping. It is shown that the phase-damping
contribution to the real component of the phugoid eigenvalue is always positive and tends to reduce the total
phugoid damping.Under certain conditions this phase damping can cause the phugoid mode to become divergent.

Nomenclature
Aw = planform area of the wing
CD = total drag coef� cient
CDp = parasitic drag coef� cient
CD, a = change in drag coef� cient with angle of attack
CL = lift coef� cient
CL , a = change in lift coef� cient with angle of attack
CM = pitching moment coef� cient
CM , a = change in pitching moment coef� cient

with angle of attack
CM ,$ = change in pitching moment coef� cient

with dimensionless pitching rate
c̄ = mean chord length
e = Oswald ef� ciency factor
FT = thrust force
g = acceleration of gravity
Iyy = pitching moment of inertia in body-� xed

coordinates
m = aircraft mass
RA = aspect ratio
Rd = phugoid pitch-damping ratio
Rg = dimensionless gravitationalacceleration
RM = dimensionless change in pitching moment

with axial velocity
RM , a = dimensionless change in pitching moment

with angle of attack
RM ,$ = dimensionless change in pitching moment

with pitching rate
Rp = phugoid phase-divergenceratio
Rs = phugoid stability ratio
Rx = dimensionless change in axial force with

axial velocity
Rxa = complex amplitude
Rxc = complex coef� cient
Rxp = complex phase
Rx , a = dimensionless change in axial force with

angle of attack
Rz = dimensionless change in normal force with

axial velocity
Rza = complex amplitude
Rzc = complex coef� cient
Rzp = complex phase
Rz, a = dimensionless change in normal force

with angle of attack

Received 17 April 1999; revision received 28 August 1999; accepted for
publication10 September 1999.Copyright c° 1999by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved.

¤ Professor, Mechanical and Aerospace Engineering Department;
wfphillips@mae.usu.edu.Member AIAA.

t = time
V = airspeed
Vxb = axial velocity component in body-�xed

coordinates
Vzb = normal velocity component in body-� xed

coordinates
V0 = equilibrium airspeed
x f = horizontal position in Earth-� xed coordinates
xT = axial thrust offset in body-� xed coordinates
z f = vertical position in Earth-� xed coordinates
zT = normal thrust offset in body-� xed coordinates
a = angle of attack
a T = thrust angle
D = deviation from equilibrium
f = dimensionless vertical position
h = Euler elevation angle or pitch attitude
k = eigenvalue
k i = imaginary part of eigenvalue
k r = real part of eigenvalue
n = dimensionless horizontal position
q = air density
s = dimensionless time
t = dimensionless forward velocity
x yb = pitching rate in body-� xed coordinates
$ = dimensionless pitching rate
$n = dimensionless undamped natural frequency

Introduction

T HE low-frequencyoscillationsin altitude and airspeed that de-
velop when an airplane is disturbed from equilibrium � ight

are referred to as phugoid motion. The motion is a slow oscillatory
interchange between kinetic and potential energy that occurs when
a statically stable aircraft attempts to reestablish the equilibrium
balance between lift, weight, thrust, and drag. This periodic mo-
tion has been studied for nearly 100 years and is well understood.
Lanchester1 publishedthe � rst descriptionof phugoidmotion,and in
this work he presents the � rst elementary theory of dynamic aircraft
stability.Shortly thereafter,a more rigorousmathematical treatment
of aircraft motion and dynamic � ight stability was developed and
published by Bryan.2 Together, the work of Lanchester and Bryan
laid the foundation for the study of dynamic � ight stability in gen-
eral and phugoid motion in particular. In the following decades,
much was published on theoretical and experimental investigations
of dynamic � ight stability and the application of this work to air-
craft handling characteristics and design. Perkins3 has presented a
detailed review of this early work. For the past 50 years, the theoret-
ical analysisof phugoidmotion and its applicationto aircraft design
has beena topic treated in virtuallyall engineeringtextbooksdealing
with aircraft stability and control (see Refs. 4–14).
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One approach to the study of longitudinal aircraft dynamics in-
volves solving the full nonlinearequationsof motion.15 This system
of nonlinear equations is quite complex. Whereas explicit analytic
solutions are rare, such solutions have been obtained for one de-
gree of freedom (for example, see Painlevè16 and Campos et al.17 ).
Nonlinear longitudinal dynamics with three degrees of freedom is
typically treated using the method of bifurcation together with nu-
merical methods. Campos18 gives a good review of the work on
nonlinear aircraft dynamics.

A more common approachto longitudinalaircraftdynamicsstarts
with the linearized equations of motion that were � rst developed
by Bryan.2 Linearized phugoid motion is characterized by the fre-
quency, the damping rate, and the relative amplitudes and phase
shifts for the oscillations in airspeed, angle of attack, pitching rate,
and altitude. Once the aerodynamic stability and damping deriva-
tives have been determined from wind-tunnel tests or other means,
the free � ight phugoid characteristics for an aircraft can readily be
evaluated.This can be done by numerically determining the eigen-
values and eigenvectors associated with the linearized equations of
motion (for example, see Etkin and Reid13 ). However, the eigenval-
ues and eigenvectors for phugoid motion depend on many aircraft
design and operating parameters and the nature of this dependence
is not easily observable from a numerical solution. For this rea-
son, a closed-form solution that accurately describes the essential
features of phugoid motion is desirable. In addition, closed-form
solutions have always been useful for the optimization of aircraft
control systems (see Ashkenas and McRuer19 ).

Lanchester1 developed the � rst closed-form approximation for
phugoid motion. In his original solution, Lanchester assumed no
change in angle of attack and no change in the net axial force.
With these assumptions,Lanchester obtained an approximation for
the phugoid frequency.However, this approximationpredicts com-
pletely undampedsinusoidalmotion and givesno informationabout
the phugoid damping. A well-known modi� cation of Lanchester’s
solution, which does include an approximation for the phugoid
damping,has beenwidely used. In this approximation,Lanchester’s
original assumption of no change in angle of attack is retained but
the assumption of no change in axial force is dropped.Several vari-
ations from this constant angle of attack approximation have been
used.20 ¡ 23 A somewhat general variation of this approximationwas
recentlypresentedby Bloy.24 In this approximation,which accounts
for the effects of thrust offset, the assumptionof no change in angle
of attack is relaxed. Instead, the approximation is based on neglect-
ing all time derivatives in the pitching moment equation. The more
commonly used constant angle of attack approximationis obtained,
as a special case, from Bloy’s solution when the thrust vector is
aligned with the center of gravity.

Althoughseveralvariationsof a closed-formphugoidapproxima-
tion have been used, none of these accurately predict many of the
fundamental characteristics of phugoid motion. The current paper
presents an improved closed-form approximation that more accu-
rately describes both the period and the damping for phugoid mo-
tion. This new solution accounts for changes in angle of attack and
accurately predicts the effects of pitch stability and pitch damping.
In addition, the solution points out another contribution to phugoid
damping that the author has called phase damping. Under certain
conditions this phase damping can cause the phugoid mode to be-
come divergent.

Current Phugoid Approximations
To obtain the phugoid eigenvaluesand eigenvectors,whether nu-

merically or analytically, we start with the linearized longitudinal
equations of aircraft motion. The development of these equations
can be found in any undergraduate textbook dealing with aircraft
dynamics (for example, Etkin and Reid13). The eigenvalues and
eigenvectors are obtained from the homogeneous equations, with
all control inputs set to zero. For phugoid motion, the oscillations
in angle of attack are small and of low frequency.Thus, for this mo-
tion, we neglect the force and moment derivatives with respect to
the rate of change of angle of attack. Similarly, we also neglect the
change in axial and normal force with respect to pitching rate. If we

also restrict the analysis to deviationsabout level � ight, the familiar
longitudinal equations of motion can be written in dimensionless
form as
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As is the usual convention, the characteristic length is taken to be
one-half the mean chord length, and the characteristic velocity is
taken to be the equilibrium airspeed. Thus,

D t ´ D Vxb / V0, D a »= D Vzb / V0 , D $ ´ D x yb c̄ /2V0

D n ´ 2 D x f / c̄, D f ´ 2 D z f / c̄ (2)

where the D indicatesa deviationfrom equilibriumand the notation
used on the left-hand side of Eq. (1) indicates differentiation with
respect to dimensionless time,
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(3)

The dimensionlesscoef� cients on the right-hand side of Eq. (1) are
all evaluated at the equilibrium � ight condition and are de� ned as
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The best known and most widely used phugoid approximation
is obtained from Eq. (1) by setting the deviation in angle of attack
equal to zero and ignoring the pitching moment equation. A more
general variation of this approximation, due to Bloy,24 is obtained
fromEq. (1) by simply neglectingall time derivativesin the pitching
moment equation. Most of the commonly used variations of the
phugoid approximation can be obtained as special cases of Bloy’s
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solution.With this approximation,theeigenproblemassociatedwith
Eq. (1) becomes
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The nontrivial eigenvalues obtained from Eq. (5) are

k =[ Rx

2
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2

(6)

and the associated eigenvectors are given by
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D n (7)

If we also assume that the thrust is constant, alignedwith the cen-
ter of gravity, and in the directionof � ight, the equilibriumlift force
must equal the weight and the equilibrium pitching moment must
vanish. For this common con� guration, from Eq. (4) we can write
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2m
CL = ¡
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2m ( mg
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q V 2
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V 2
0
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Rx = ¡ ( q Aw c̄ /2m)CD = ¡ ( q Aw c̄/ 2m)CL (CD / CL )

= ¡ 2Rg (CD / CL ) (9)

and

RM = 0 (10)

With these additional restrictions, the approximate phugoid eigen-
values and eigenvectors from Eqs. (6) and (7) reduce to the well-
known form

k = Rg[ ¡ (CD / CL ) § iÏ 2 ¡ (CD / CL)2]

= (gc̄ /2V 2
0 )[ ¡ (CD / CL ) § iÏ 2 ¡ (CD / CL )2] (11)

and
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Equation (11) predicts the same undamped natural frequency as
Lanchester’s original approximation.1 This very simple result gives
an undampedphugoid frequency that depends only on airspeed and
not at all on the airplane or its altitude. The phugoid damping as
predicted by Eq. (11) is also quite simple, depending only on the

airspeed and the lift-to-drag ratio for the airplane. Whereas this
approximate closed-form solution has been widely used for many
years, it is not particularly accurate and does not capture many of
the fundamental characteristics of phugoid motion. Because this
approximation ignores all angular momentum terms and results in
no change in angle of attack, it includes only the effects of lift and
drag and does not account for pitch stability, pitch damping, or
changes in angle of attack.

For a typical general aviation aircraft the approximate phugoid
eigenvalues, computed from Eq. (11), are accurate to within about
20–40%. However, for high-performance aircraft, the result pre-
dicted by Eq. (11) is much worse. In fact, under certain conditions,
this approximation does not even predict the correct sign for the
phugoid damping. Because the gravitational acceleration, the air-
speed, the lift coef� cient, and the drag coef� cient are always pos-
itive, Eq. (11) will always predict a convergent phugoid mode. In
reality, however, modern airplanes can exhibit a divergent phugoid
mode at certain airspeeds.

The approximationgiven by Eqs. (6) and (7) does not accurately
describe phugoid motion under many conditions.Bairstow20 devel-
oped another closed-form approximation that gives a much better
result for the phugoid frequency. However, this approximation was
never widely used, because in most cases the damping predicted
by Bairstow’s approximation is less accurate than that predicted by
Eq. (11).

Improved Phugoid Approximation
Phugoid motion is always underdamped. Thus, the eigenvalues

describing the phugoid mode form a complex pair, k = k r § i k i ,
where the imaginary part speci� es the frequency and the real part
speci� es the damping. With this recognition, the eigenproblem as-
sociated with Eq. (1) could be written as
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Phugoidmotion is lightly damped.Thus, the real part of the phugoid
eigenvaluepair is verysmall.Furthermore,whereasboth theangleof
attackand thepitchingratechangesigni� cantlywith time, theampli-
tudesfor these changesare also very small. Thus, theproducts k r D a
and k r D $ are extremely small and can be ignored. This means
that we can approximate the variation in angle of attack and pitch-
ing rate as undamped sinusoidalmotion, ( k r § i k i ) D a »= §i$n D a
and ( k r § i k i ) D $ »= §i$n D $, where $n is the dimensionlessun-
damped natural frequency.For the sake of simplicity, we shall con-
tinue to restrict the analysis to deviations about level � ight and
assume that the thrust vector is aligned with the center of grav-
ity. With these approximations, the longitudinal eigenproblem in
Eq. (13) becomes
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The secondand third equationsin Eq. (14) can be combinedto relate
the variation in angle of attack and pitching rate to the variation in
forward velocity. This gives
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where the complex coef� cients Rxc and Rzc are de� ned as

Rxc ´
Rz(RM ,$ ¨ i$n)

RM , a ¡ Rz, a RM ,$ + $2
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The second and third equations in Eq. (15) can now be used to
eliminate the angle of attack and the pitching rate from the � rst and
last of these equations. Thus, Eq. (15) can be rewritten as
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The � rst and the last of the equations in Eq. (18) contain only the
dimensionless forward velocity deviation D t and the deviation in
the Euler elevationangle D h . These two equations can be separated
from the other four equations, and this system can be rearranged to
give the second-order eigenproblem,

[ (Rx + Rx , a Rxc ¡ k ) ¡ Rg

Rzc ¡ k ] { D t

D h } = {0

0} (19)
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Equation (19) can be used to solve for the phugoid eigenvalues and
the resulting complex eigenvaluescan be used in Eq. (20) to obtain
the eigenvectors.

The characteristic equation associated with Eq. (19) is

k 2 ¡ (Rx + Rx , a Rxc) k + Rg Rzc = 0 (21)

and the eigenvalues are the roots of this quadratic equation,
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Rx + Rx , a Rxc

2
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2 )
2

¡ Rg Rzc (22)

Because the phugoid frequency is very low, we can neglect terms
in Eqs. (16) and (17) that contain the phugoid frequency raised to

any power greater than one. Thus, these complex coef� cients can
be approximated as

Rxc
»=

Rz RM ,$

RM , a ¡ Rz, a RM ,$ (1 ¨ i
$n

RM ,$ )
£ [1 ¨ i

$n (Rz, a + RM ,$)
RM , a ¡ Rz, a RM ,$ ] »= Rxa (1 ¨ i$n Rxp) (23)

and

Rzc
»=

¡ Rz RM , a

RM , a ¡ Rz, a RM ,$ [1 ¨ i
$n (Rz, a + RM ,$)
RM , a ¡ Rz, a RM ,$ ]

»= Rza(1 ¨ i$n Rzp) (24)

where Rxa , Rza, Rxp , and Rzp are de� ned as
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Using Eqs. (23) and (24) in Eq. (22), the phugoid eigenvalues are
approximated as
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The imaginary componentsof the complex coef� cients Rxc and Rzc

are very small. This very small phase shift transfers a small fraction
of the imaginarypart of the eigenvalueto the real part and transfersa
small fractionof the real part to the imaginarypart.Becausephugoid
motion is so lightly damped, the small fraction of the real part that
is phase shifted to the imaginary part can be neglected. However,
when a very small fraction of the much larger imaginary part is
phase shifted to the real part, it becomes signi� cant.

Thus, ignoring the phase shift in Rx c, Eq. (29) can be written

k »=
Rx + Rx , a Rxa

2
§ iÏ Rg Rza! 1 ¨ i$n Rzp ¡

(Rx + Rx , a Rxa )2

4Rg Rza
(30)

Because both the phase shift and the square of the damping term are
very small, we can further approximate Eq. (30) as
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which can be rearranged to give

k »= [(Rx + Rx , a Rxa) / 2] + ($n RzpÏ Rg Rza /2)

§ iÏ Rg Rza ¡ [(Rx + Rx , a Rxa) / 2]2 (32)

From Eq. (32) it is clearly seen that there is a componentof phugoid
damping that is related to the phugoid frequency. Here this will
be called phase damping because it results from the phase shift
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between angle of attack,pitching rate, and forward velocity.As will
be shown, the phase-damping contribution to the real component
of the eigenvalue is always positive and tends to reduce the total
phugoid damping. In fact, under certain circumstances, the phase
damping can result in a large enough positive contribution to make
the phugoid motion divergent.

The dimensionless undamped natural frequency $n has to this
point been unknown. However, this natural frequency is simply the
magnitude of the imaginarypart of the phugoideigenvalueswith all
damping termsset to zero.Thus,$n is easilyevaluatedfromEq. (32)
by setting both (Rx + Rx , a Rxa) / 2 and [$n RzpÏ (Rg Rza)]/ 2 to zero.
This gives

$n = Ï Rg Rza (33)

By the use of Eq. (33) in Eq. (32), the dimensionlessphugoideigen-
values can be expressed as

k »= (Rz / 2){ [(Rx / Rz) + Rd ¡ Rp]

§ iÏ ¡ (4Rg / Rz)Rs ¡ [(Rx / Rz) + Rd ]2} (34)

where we de� ne the phugoid stability ratio,
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the phugoid pitch-damping ratio,
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and the phugoid phase-divergenceratio,
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= Rg Rs ( Rz, a + RM ,$
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If the thrust is independent of airspeed and aligned with the di-
rection of � ight, this approximationcan be somewhat simpli� ed by
invoking Eqs. (8) and (9). Using these equations in Eq. (34), the
dimensionless phugoid eigenvaluescan be written as

k »= (gc̄ / 2V 2
0 ){ [ ¡ (CD /CL ) ¡ Rd + Rp]

§ iÏ 2Rs ¡ [(CD / CL ) + Rd ]2} (38)

Results
The phugoid frequency predicted from Eq. (34) or Eq. (38) de-

pends on the pitch stability of the airplane. The phugoid damping
predictedfromthisapproximationis a functionof the pitch-damping
derivativeand the phugoidfrequency,as well as the drag.The eigen-
values and eigenvectorspredictedby usingEq. (34) or Eq. (38) with
Eq. (20) are greatly improved over those predicted from Eqs. (6)
and (7). For example, consider a typical general aviation airplane
having

V0 = 54.864 m/s, c̄ = 1.709 m, CL = 0.393

CD = 0.050, CD, a = 0.35, CL , a = 4.40

CM , a = ¡ 0.68, CM ,$ = ¡ 9.95, Rx = ¡ 0.00071

Rz = ¡ 0.00556, RM = 0.0, Rg = 0.00278

Rx , a = 0.00030, Rz, a = ¡ 0.03151

RM , a = ¡ 0.00220, RM ,$ = ¡ 0.03212

By the use of these values, the exact solution for the phugoid eigen-
values and eigenvectorsobtained numerically from Eq. (1) gives

ìïïïïïïï
í
ïïïïïïïî

D t

D a

D $

D n

D f

D h

üïïïïïïï
ý
ïïïïïïïþ

= C1,2

ìïïïïïïï
í
ïïïïïïïî

0.002081 § 0.000370i

¡ 0.000115 ¨ 0.000025i

0.000008 § 0.000001i

0.062661 ¨ 0.646781i

0.760090

0.000081 ¨ 0.002489i

üïïïïïïï
ý
ïïïïïïïþ

£ exp[( ¡ 0.000258 § 0.003242i ) s ]

The approximate solution obtained from Eqs. (20) and (38) results
in

ìïïïïïï
í
ïïïïïïî

D t

D a

D $

D n

D f

D h

üïïïïïï
ý
ïïïïïïþ

= C1,2

ìïïïïïï
í
ïïïïïïî

0.002077 § 0.000370i

¡ 0.000115 ¨ 0.000025i

0.000008 § 0.000001i

0.062894 ¨ 0.647399i
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0.000081 ¨ 0.002481i

üïïïïïï
ý
ïïïïïïþ

£ exp[( ¡ 0.000257 § 0.003233i ) s ]

whereas the approximate solution obtained from Eqs. (6) and (7)
yields

ìïïïïïï
í
ïïïïïïî

D t

D a

D $

D n

D f

D h

üïïïïïï
ý
ïïïïïïþ

= C1,2

ìïïïïïïï
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0.002233 § 0.000407i

0.000000

0.000012 § 0.000002i

0.051940 ¨ 0.575005i

0.816490

0.000289 ¨ 0.003197i

üïïïïïïï
ý
ïïïïïïïþ

£ exp[( ¡ 0.000354 § 0.003916i ) s ]

Figures 1–3 show how the phugoid approximation given by
Eq. (38) compares with Eq. (11) and the exact solution for a broad
range of aerodynamic parameters. Note that, as the pitch-stability
derivativeapproachesin� nity, the phugoidstabilityratioapproaches
unity, while both the phugoid pitch-damping ratio and the phase-
divergence ratio approach zero. Thus we see that, in the limit of
in� nite pitch stability, the result given by Eq. (38) reduces exactly
to Eq. (11). Thus, Eq. (11) representsan asymptotic solution for in-
� nite pitch stability.This can be seen graphicallyin Fig. 1. In Fig. 1,
all parameters except the pitch-stability derivative CM , a have been
held constant at those values given in the earlier example. In Fig. 2,
a comparison between Eq. (11), Eq. (38), and the exact solution is
shown for a broad range of lift-to-drag ratio. A similar comparison,
showing the effect of pitch damping CM ,$ is shown in Fig. 3.

Fig. 1 Effect of pitch stability on the dimensionless phugoid eigenval-
ues.
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Fig. 2 Effect of lift-to-drag ratio on the dimensionless phugoid eigen-
values.

Fig. 3 Effect of pitch dampingon the dimensionless phugoideigenval-
ues.

Discussion
The present closed-form approximation allows us to see more

easily how the aerodynamic coef� cients and stability derivatives
affect the phugoid motion. Damping has very little effect on the
phugoid frequency. Thus, neglecting the damping in Eq. (38) and
applying the de� nition of phugoid stability ratio from Eqs. (35)
and (4), the undamped natural frequency for phugoid motion
is

x n =
2V0

c̄
imag( k ) »=

p
2

g

V0 ! RM , a

RM , a ¡ Rz, a RM ,$

=
p

2
g

V0 ! (4m / q Aw c̄)CM , a

(4m / q Aw c̄)CM , a ¡ Cz, a CM ,$

(39)

From Eq. (39), we � rst noticethat the phugoidfrequencyis inversely
proportional to forward speed. In addition, there are four other pa-
rameters that affect the phugoid frequency, the dimensionlessmass,
the change in pitching moment with respect to angle of attack, the
change in z force with respect to angle of attack, and the change in
pitchingmoment with respect to pitching rate. For a staticallystable
aircraft, all of these parameters except the dimensionless mass are
negative. Thus, the phugoid stability ratio is always between zero
and unity. From this term we see that the phugoid frequency in-
creaseswith dimensionlessaircraftmass and pitch stability,whereas
it decreases with lift slope and pitch damping. As the product of di-
mensionless mass and pitch stability becomes large, compared to
the product of lift slope and pitch damping, the phugoid stabil-
ity ratio approaches unity, and the undamped phugoid frequency
predicted from Eq. (38) reduces to that predicted by Eq. (11). Con-
versely, as the product of pitch stability and dimensionless mass
approaches zero, so do the phugoid stability ratio and the phugoid
frequency.

From Eq. (38), we see that there are three distinct components to
phugoiddamping.Here, these are called the drag damping, the pitch

damping, and the phase damping. In most cases the drag damping
is the largest of these three components. From Eq. (38), we de� ne

drag damping ´ ¡ (2V0 / c̄)[(gc̄ / 2V 2
0 )( ¡ CD /CL )]

= (g / V0)(CD /CL) (40)

Clearly, because the velocity, the drag coef� cient, and the lift co-
ef� cient are all positive, the drag damping is always positive. The
total drag is the sum of the parasitic drag and the induced drag. The
parasitic drag coef� cient is very nearly constant. The induced drag
coef� cient is proportional to the lift coef� cient squared, and the lift
coef� cient is inversely proportional to the velocity squared. Thus,
we can write

drag damping »=
g

V0

CDp + C2
L / p eRA

CL
=

g

V0 ( CDp

CL

+
CL

p eRA )
=

g

V0 [ CDp( 1
2
q V 2

0 Aw )
mg

+
mg

p eRA( 1
2
q V 2

0 Aw ) ] (41)

At very high airspeeds, the parasiticdrag dominates, the drag-to-lift
ratio is proportionalto velocitysquared,and thephugoiddrag damp-
ing increases linearly with forward velocity. At very low airspeeds,
the induced drag dominates, the drag-to-lift ratio is inversely pro-
portional to velocity squared, and the phugoid drag damping varies
inversely with the forward velocity cubed. At some intermediate
airspeed, phugoid drag damping will exhibit a minimum.

The phugoid pitch damping is de� ned from Eqs. (38), (36), and
(4) to be

pitchdamping ´
g

V0
Rd =

g

V0 ( Rx , a RM ,$

RM , a ¡ Rz, a RM ,$ )
=

g

V0 [ Cx , a CM ,$

(4m / q Aw c̄)Cm, a ¡ Cz, a CM ,$ ] (42)

To determinethe sign of the phugoidpitchdamping,we note that the
dimensionless mass is positive, whereas the pitch-stability deriva-
tive, the z-force derivative, and the pitch-dampingderivative are all
negative. Thus, the phugoid pitch damping will have the same sign
as the change in axial force with respect to angle of attack. This
axial force derivative can be either positive or negative.

The change in the x-force coef� cient with respect to angle of
attack can be written in terms of the lift and drag coef� cients,

Cx , a ´
@

@ a
(CL sin a ¡ CD cos a ) = CL cos a + CL , a sin a

+ CD sin a ¡ CD, a cos a »=CL ¡ CD, a (43)

The change in drag coef� cient with angle of attack can be approxi-
mated as

CD, a
»=

@CD

@CL

@CL

@ a
=

@

@CL (CDp +
C2

L

p eRA ) CL , a =
2CL , a

p eRA
CL

=
2CL , a

p eRA

mg
1
2
q V 2

0 Aw

(44)

Using Eq. (44) in Eq. (43), we have

Cx , a
»= CL (1 ¡

2CL , a

p eRA ) =
mg

1
2
q V 2

0 Aw
(1 ¡

2CL , a

p eRA ) (45)

By the use of Eq. (45) in Eq. (42), the phugoid pitch damping can
be expressed as

pitchdamping »=
mg2

1
2
q V 3

0 Aw
(1 ¡

2CL , a

p eRA )
£ ( CM ,$

(4m / q Aw c̄)CM , a ¡ Cz, a CM ,$ ) (46)
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From Eq. (46), we see that phugoid pitch damping is inversely pro-
portional to the cube of the forward velocity; it increases with the
pitch-damping derivative; it decreases with increasing pitch stabil-
ity. We also see that phugoidpitch damping can be either positiveor
negative.Furthermore,thepitchdampingis morenegativeforplanes
with low aerodynamicef� ciency and more positive for planes with
high aerodynamicef� ciency.This may seem counterintuitive.How-
ever, the total phugoid damping is the sum of the drag damping, the
pitch damping, and the phase damping. Lowering the aspect ratio or
Oswald ef� ciency factor will increase the drag damping more than
it will decrease the pitchdamping.Thus, total phugoiddampingwill
increase with decreasing aerodynamic ef� ciency, as expected.

Using Eqs. (37) and (4) in Eq. (38), the phugoid phase damping
is de� ned as

phasedamping ´ ¡
g

V0
Rp = ¡

g

V0
Rg Rs ( Rz, a + RM ,$

RM , a ¡ Rz, a RM ,$ )
= ¡

g2c̄

2V 3
0

Rs [ (8Iyy / q Aw c̄3)Cz, a + (4m / q Aw c̄)CM ,$

(4m / q Aw c̄)CM , a ¡ Cz, a CM ,$ ] (47)

We have already seen that the phugoid stability ratio can vary from
zero to positiveunity.The dimensionlessmass and momentof inertia
are always positive,whereas the pitch-stabilityderivative, the pitch-
dampingderivative,and the z-forcederivativeare all negative.Thus,
for a stable aircraft, the phugoid phase damping is always negative,
tending to decrease the total phugoid damping. In fact, under cer-
tain circumstances, it is possible for this negative phase damping to
overpower the drag and pitch damping, making the phugoid motion
divergent.Because the phugoid phase-dampingis inverselypropor-
tional to the forward velocity cubed, this condition is aggravated at
low airspeed.

The phugoid approximation given by Eq. (11) predicts that only
by increasing drag can we increase phugoid damping. Increasing
aircraft drag to improve phugoid damping is obviously not a de-
sirable solution. From the current improved approximation,we see
that phugoid damping can, in fact, be increased without increasing
aircraftdrag.This can be donebyeither increasingthe phugoidpitch
damping or by decreasing the magnitude of the negative phugoid
phase damping.

Conclusions
An improved closed-formapproximationfor phugoidmotion has

been developed. The results show that the phugoid frequency in-
creases with aircraft mass and pitch-stability derivative, whereas
it decreases with the lift slope and pitch-damping derivative. As
the pitch-stabilityderivative approacheszero, or the pitch-damping
derivative becomes very large, the phugoid frequency approaches
zero.The total phugoiddamping is shown to dependon pitch damp-
ing as well as aircraft drag. It is shown that phugoid pitch damping
is inversely proportional to the cube of the forward velocity and in-
creases with the pitch-damping derivative. Phugoid pitch damping
decreaseswith increasingpitch stabilityand can be eitherpositiveor

negative. This new closed-form phugoid approximation also points
out an additional contribution to phugoid damping that the author
has called phasedamping.The phugoidphase damping is a function
of aircraft mass and moment of inertia, as well as the pitch-damping
and pitch-stability derivatives, and is inversely proportional to the
forward velocity cubed. For a statically stable aircraft, the phugoid
phase damping is always negative, tending to decrease the total
phugoiddamping, and it is possible for this negativephase damping
to render the phugoid motion divergent.
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16Painlevé, P., “Étudesur leRegiméNormal d’an Avion,”TechniqueAero-

nautique, Vol. 1, No. 1, 1910, pp. 3–11.
17Campos, L. M. B. C., Fonseca, A. A., and Azinheira, J. R. C., “Some

Elementary Aspects of Non-Linear Airplane Speed Stability in Constrained
Flight,” Progress in Aerospace Science, Vol. 31, No. 2, 1995, pp. 137–169.

18Campos, L. M. B. C., “Non-Linear LongitudinalStability of a Symmet-
ric Aircraft,” Journal of Aircraft, Vol. 34, No. 3, 1997, pp. 360–369.

19Ashkenas, I. L., and McRuer, D. T., “Optimization of Flight-Control,
Airframe System,” Journal Aerospace Science, Vol. 27, No. 3, 1960, pp.
197–218.

20Bairstow, L., Applied Aerodynamics, 2nd ed., Longmans–Green, New
York, 1939.

21Grigor’ev, V. A., and Sviatodukh,V. K., “Characteristics of the Phugoid
Motion of Nonmaneuverable Aircraft,” TsAGI, Uchenye Zapiski, Vol. 21,
No. 1, 1990, pp. 59–68.

22Kobayashi,O., “Static and Dynamic Flight-PathStabilityof Airplanes,”
Journal of the Japan Society for Aeronautical and Space Sciences, Vol. 40,
No. 3, 1992, pp. 403–411.

23Xu, R., “An Explorationon the Analytical-Solutionfor the Longitudinal
Phugoid Mode of Aircraft,” Acta Aerodynamica Sinica, Vol. 13, 1995, pp.
457–462.

24Bloy, A. W., “Thrust Offset Effect on LongitudinalDynamic Stability,”
Journal of Aircraft, Vol. 35, No. 2, 1998, pp. 343, 344.


